

Digital ozone sensor

Product Introduction

Digital ozone sensor is a new generation of intelligent water quality monitoring sensor which is researched and developed by our Company. Using advanced non-membrane constant voltage sensor, it's no need to change membrane and medicament. Stable performance, easy maintenance, support to check the data, debugging and maintenance by mobile phone or computer. With many features, such as, high sensitive, quick responds, exact measurement, high stability, excellent repeatability, easy maintenance and multi-functions and so on. It can measure the ozone of liquid exactly. It is widely used to online monitor and control the ozone content in liquid. Such as, circulating water, swimming pool, drinking water plant, hospital waste water, water quality treatment project.

Main Feature

- ♦ This product is an ozone digital sensor, output RS485 signal directly.
- ♦ High accuracy, high stability, strong anti-jamming.
- It can connect to computer, PLC and other equipment which has Rs485/4-20mA signal interface to collect data and maintenance without instrument. It is convenient for users to integrate sensors into industrial control environment, such as, upper computer system and the internet of things.
- ♦ By using the mobile phone app, the sensor can be collected, debugged and maintained by the wireless network (such as WIFI / GPRS) or wired

- network (OTG line and 485 / USB module).
- The sensor can be set up by RS485 communication, slave address, baud rate, online calibration, recoverable factory setting, 4-20ma output range(4-20mA is optional), coeffcient of proportionality and incremental compensation.
- ♦ Using two-point calibration method.
- ♦ Power off protection > 10 years.

Technical Parameters

- ♦ Measuring range: 0-20.00 mg/L (ppm)
- \Rightarrow Accuracy: $\pm 1\%$ or ± 0.01 mg/L
- ♦ 485 interface support to the internet of things (MODBUS Protocol partial compatibility)
- ♦ Working condition Environmental temperature 0-60°C
- ♦ Input impedance: $\ge 1 \times 10^{12} \Omega$
- \Leftrightarrow Output load: 4-20mA load <750 Ω (Optional)
- ♦ Working voltage: 5V or DC 12V or 24V
- ♦ Protection grade: IP68

Digital ozone Sensor Communication Protocol

MODBUS-RTU			
Baud rate 9600 (default)			
Device No 1 (default)			
Data bit 8 digits			
odd-even calibration	NO		
Stop bit	1 digits		

Register Setting

Register name	Address	type of data	length	Read/ Write	Instruction
Display value	R0	unsigned	1	R	(3 decimals)
temperature	R1	unsigned	1	R	(3 decimals)
4mA output display value	R2	unsigned	1	R	(3 decimals)
20mA output display value	R3	unsigned	1	R	(3 decimals)
Rang lower limit	R4	unsigned	1	R	Default to 0
Rang upper limit	R5	unsigned	1	R	Default 2000 (3decimals)
Proportionality factor	R6	unsigned	1	R	(1 decimal)
Increment	R7	signed	1	R	(3 decimals)
Resolution	R8	signed	1	R	Default to 3
Product identification	R9	signed	1	R	Default to 6
Slave address	R10	unsigned	1	R	Rang between 1-127

					1200
					2400
					4800
Baud rate	R11	unsigned	1	R	9600
					19200
					38400
					57600
	R12	unsigned	1		Find parameter
Function call				W	settings for more
					details
					Find parameter
parameter1	R13	unsigned	1	W	settings for more
					details
					Find parameter
parameter2	R14	unsigned	1	W	settings for more
					details

MODBUS Instruction format:

This sensor is compatible with 0x03, 0x06, 0x10 function codes of MODBUS protocol.

0x03 Command Format:

Definition	Address	Function Code	Initial Address	Number of Register	CRC calibration
Data	ADDR	0x03	Rstart	Rnum	CRC 16
Number of	1	1	2	2	2
Bytes	1	1	2	2	2

0x03 Return Format:

Definition	Address	Function Code	Number of Data	Data	CRC calibration
Data	ADDR	0x03	Rnum*2	Data	CRC 16
Number of Bytes	1	1	1	Rnum*2	2

0x06 Command Format:

Definition	Address	Function Code	Register Address	Data	CRC calibration
Data	ADDR	0x06	Raddr	Data	CRC 16
Number of Bytes	1	1	2	2	2

0x06 Return Format (same as command)):

Definition	Address	Function Code	Register Address	Data	CRC calibration
Data	ADDR	0x06	Raddr	Data	CRC 16
Number of Bytes	1	1	2	2	2

0x10 Command Format:

Definition	Address	Function Code	Initial Address	Number of Register	Number of Data	Data	CRC calibration
Data	ADDR	0x10	0x000C	0x0003	0x06	Data	CRC 16
Number of Bytes	1	1	2	2	1	6	2

0x10 Return Format:

Definition	Address	Function Code	Initial Address	Number of Register	CRC calibration
Data	ADDR	0x10	0x000C	0x0003	CRC 16
Number of Bytes	1	1	2	2	2

Data reading:

This sensor data is read using the 0x03 function code of the MODBUS protocol.

Example: Reading Ozone value.

Send command: 01 03 00 00 00 01 84 0A

Return: 01 03 02 1A CC B3 71

The data part is: 1A CC

Ozone value: Data 0xA CC, converted to decimal in 6860, ozone value is

6.860mg/L, retaining 3 decimal places

Parameter adjustment:

- 1. This sensor parameter adjustment uses the 0x06 or 0x10 function code of the MODBUS protocol.
 - 2, using 0x06 function code adjustment parameters are divided into 3 steps
 - 1) Write parameter 1 to the R13 register
 - 2) Write parameter 2 to the R14 register
 - 3) Write the function number to the R12 register
- 3. Use the 0x10 function code, and write the function number, parameter 1, and parameter 2 to the three registers starting from R12. Equivalent to the step-by-step write effect.
- 4. When the function call is successful, the R12, R13, and R14 registers are all reset to 0. If the function call fails or the parameters are incorrect, the R14 register will display -1.

Function call parameter list

Function	Parameter 1	Parameter 2	Function number
Zero Calibration	Zero standard value *1000	1	1
Slope Calibration	Slope standard value *1000	2	1
Change the 4-20ma output range (need to be customized)	4mA Output representative value	20mA representative value	3
Change Correction Factor	Scale factor	Display value increment	5
Change slave configuration	New slave number	New baud rate	6
Restore Factory Setting	Password 20034	Arbitrary value	7

Example: Ozone calibration (using 0x10 function code)

Zero calibration: Ozone velue of standars is 0.5 mg/L, 0.5*1000=500, Converted to hexadecimal is 0x01F4. Therefore, the function number is 0x0001, parameter 1 is 0x0000, and parameter 2 is 0x0001.

The data part is: 00 01 01 F4 00 01

Send command: 01 10 00 0C 00 03 06 00 01 01 F4 00 01 9A B1

Return: 01 10 00 0C 00 03 40 0B

Slope calibration: Ozone velue of standars is 0.5 mg/L , 0.5*1000=1000,

Converted to hexadecimal is 0x03E8. Therefore, the function number is 0x0001,

parameter 1 is 0x0318, and parameter 2 is 0x0001 The data section is: 00 01 03

E8 00 02

Send command: 01 10 00 0C 00 03 06 00 01 03 E8 00 02 1A CE

Return: 01 10 00 0C 00 03 40 0B.

Attention and maintenance

- 1. If the electrode is not used, please store it in a dark, dry and ventilated environment.
- 2. The measuring electrode is a precision component, which is not decomposable. The shape and size of the electrode cannot be changed, and it is not possible to clean with a strong acid or alkali, so as not to change the electrode constant and affect the accuracy of the meter measurement. The measuring cable is a dedicated cable and cannot be replaced.
- 3. When measuring the electrode, it should be cleaned in distilled water (or deionized water) first and the filter paper should be used to absorb moisture to prevent impurities from being introduced into the liquid to be tested. Check if the terminal is dry. If there is dirt, please use absolute alcohol. Wipe, use after drying.
- 4. The electrode is used for a long time, and when a measurement error occurs, it must be calibrated with the meter. Make corrections.

When the calibration and measurement cannot be performed while maintaining and maintaining the electrode in the above manner, the electrode has failed. Please replace the electrode.